my_examplel.

e Example 1 —-—=———=-
MODULE main
VAR

button : boolean;

machine : {ready, busy, serving};
ASSIGN

button := {0,1};

init (machine) := ready;

next (machine) :=

case

machine=ready & button : busy;

machine=ready : machine;
machine=serving : ready;

1 : {busy, serving};
esac;

my_exampleZ.smv
MODULE main

VAR
bit0 : counter cell(1l):
bitl : counter_cell(bitO.carry_out);
bit2 : counter cell(bitl.carry_out);

MODULE counter_cell(carry_in)

VAR

value : boolean;
ASSIGN

init (value) := 0;

next (value) := value + carry in mod 2;
DEFINE

carry out := value & carry_inj

expr
atom :; a symbolic constant
| number :: a numeric constant

L id ; a variable identifier
| "1t oexpr :» logical not

| exprl "&" expr2 ;; logical and

| exprl "|" expr2 .5 logical or

| exprl "->" expr2 .- logical implication

| exprl "<—>" expr2 .+ logical eguivalence

| expri "=" expr2 -; equality

| exprl "!=" expr2 . » disequality

| exprl "<" exzpr2 .+ less than

| exprl ">" expr2 .3 greater than

| expri "<=" exprl .+ less that or equal

| expril "»=" expri ., greater than or equal
| expri "+" expr2 .+ integer addition

| exprl "-" expr2 .. integer subtraction

| expri "x" expr2 .. integer multiplication
| exprl /" expr2 .+ integer division

| exprl "mod" expr2 .: integer remainder

| tpexth "(" id M) .. next value

| set_expr ;; a set expressioﬁ

| case_expr ..z case expression

*, B -

;-

mod

= 1=,<,>,<=,>=

!

&

case_expr
"case"
expr_al ":" expr_bl ";"
expr_a2 ":" expr_b2 ";"

expr_an ":" expr_bn ";"
("esac"

set_expr
n{n vall u’n o n’u valn n}n
| exprl "in" expr2

;: set inclusion predicate
| exprl "union" expr2

:: set union

decl :: Y"VAR"
atoml ":" typel ;M
atom2 ' type2 Hen

i
S Bt e i

g =

type :: boolean
| u{" vall "," val2 nowo L. valn "
| "array" exprl ".." expr2 "of" type
{ | atom ["(" exprl won o expr2 ", ... exprn nyn
| “process" atom [u(n gxprl “," expr2 ', ... exprn nyn o

| yal :: atom | number

decl :: "ASSIGN"
destl ":=" expri ";"
dest2 ":=" expr2 ;"

dest :: atom
I ”illi't“ 11 (n atom u) it
t ”next“ n (n atom u)]

decl :: "DEFINE"
atomi 1] :=1I GXpri 1 ; 1l
stom2 ":=" expr2 ";

atomn ":=" expr3d ;"

MODULE main

VAR
catel : inverter(gate3.output);
gate? : inverter (gatel.output);
gatel : inverter(gate2.output);

MODULE inverter(input)

VAR

output : boolean;
CINIT

output = O

TRANS |
 next(output) = !input | next(output) = output

T T I T TR A T T T

MODULE main
VAR
semaphore : boolean; o
procl : process user{ggq“&FﬁﬁﬁQ>:
pProc? : process useeraﬁ%xﬁéﬂr%}i
ASSTGN
init (semaphore) := 0;

MODULE user (iggjqavimxmi)

VAR,
state : {idle,entering ,critical,exitingl;
ASSTIGH

init (state) := idle;
next (gtate) =
case

state = idle : {idle,entering};
state = entering & Lsemaphore : critical;
state = critical : {critical,exiting};
state = exiting : idle;
1 : state;
esac;
- next(semaphore) :=

state = entering : 1;
state = exiting : 0O;
1 : semaphore;

30y, -

MODULE maln
VAR
v : boclean; -- the semaphore variable. Tt is aseigned by both processes.
procl1] : process usexr(y); - The twe processes nave interleaved erecuticr
proc[2] : process user{y);

ASSTCHN
init(y) = 1;

MODULE user (y)
VAR
loc : {0,1,2,3,4F;
LSSIGH
init(Qoc)

03

1l

next(loc)

case
loc in {0,3} : loc+i;
loc = 1 41,2k
loc 2 v =11 3;
loc = 4 : 0
1 : loc;

esac;

1l

- mewt(y).:= ____-- changes to the semaphore variable.

case
S E e (oo S50, Tasasd oTt vRew ovEmE from iz2-se-lzi—
loc = 4 & next(loc) = 0 : 1; —- turned on when moving from 1. 4 to 1.0
1:y;
2sac;

MODULE main
VAR

y : boolean; =-- the semaphore variable. It is assigned by both processes.

proc[il : process user(y); =-- The two processes have interleaved exrecutior
proc[2] : process user(y);

ASSIGN
init(y) = 1;

JUSTICE
lprocl1].loc=3, lproc[2].loc=3

COMPASSION
(proc[il.loc = 2 & ¥ > C,proc[i].loc = 3),
(procl2].loc = 2 & y > 0,proc[2].1oc = 3)
MODULE user(y)
VAR
loc : {0,1,2,3,4;
ASSIGHN
init(lec) := 0
next(loc) :=
case
loc in {0,3} : loc+l;
loc = 1 : {1,2};
loc=2%y=1:3;
loc = 4 : 0
1 : loc;
esac;

next(yv) := -~ chanpes to the semaphore variable.
omext(y) := changes Lo LLE Semaphore vekier /v

case - o

Lt

-
]
|

”tﬁIﬂéd“Gﬁfﬁﬁﬁﬁfﬁﬁﬁﬁﬁ@fﬁf@m%%:%;$9*Lf3;;;:
:+ 1:; —— turned on when moving from 1_4 to 1.0

T6¢ = 9 next{Ioe) =35
Joc = 4 & next(loc) =0
L:y;

esac;

Fach step should either increase OT decrease (mod 5) bc, and either
subtract 1 (mod 5) from f or add one to d. £,d are oreserved when
they are not assigned to).

MCDULE main

VAR

he = 0..4;

ad 0.4

I : 0..4;

7 -+ add_one(bc) ;

B - add_one(bc) ;

C : subtract_one(bc) ;

D : add_oneld) ;

F - subtract_one(f) ;
COMPOSED

B 11O i1l (DI E)D

VMODULE add_one (x)

ASSIGN
init(x) := 0;
next(xz) := (x + 1) mod 5;

MODULE subtract_one (x)

LSSTGH
init(x) := 0;
next(x) := case
x =01 4&;
1 :x - 1;
esac;

Note that since Z does not appear ‘1 the COMPOSED section, its declaration is meaningless

