>> Let af[1]

x /\ vy

A}

- o

>> Let al2] := al1] /\ z;

Following are some of the statements available in TIv-Basie:

‘e Let yar := ezp — Assign the value of EXDIression exp to variable war.

¢ Proc proc-name {par 1--5p0r }; S End — Define a probedure proc-name with parameters
pary, ..., par, and body S. Paramteres are transferred by value.

While (ezp) S Eng — Repeatedly execute statement S until'ezp becomes .

@

If (ezp) S’l [else Sz] End — If ezp evaluates t0 a non-zerc value, execute statement S1.
Otherwise, execute statement S5. The else clause is optional.

L

Call j&ro c-name (par,,..., rar) — Invoke procedure proc-name with the given actual pa-
rameters.

Tke last two statements are the main commarnds that are used in an interactive mode.

‘Let n := 3;

To prepare;
Let mux := TRUE;

Let i := n;
While (i)
Let j :=1 - 1;
While (j)
Let mux := mux & !{(procli]l.lec = 3 & proc[jl.loc = 3);

Let j 1= 3§ - 1;
End -~ end loop on j

let i := 1 - 1;
End —- end loop on 1
End -- end procedure

Run prepare

Figure 2.1: File mux-sem.pf: Proof Script of mutual exclusion for general 7.

—- Procedure which checks if the paramter p_ is an invariant.
Proc binv(p_J;

-— Check Bi.

-- Find counter example for first premise of binv.
Let counter_example := ! (_i -> p_);

~— If the obdd of counter_example is anything but the O obdd leaf
~— then we found a counter example.
I+ (counter_example)
Print "binv FAILED in premise B1","\n",counter_example ;
Return ;
Else
Print "B1 PASSED","\n" ;
End

-= Check B2.

—— Assign # of transitionms in the system to an index variable k_.

Let k_ := _tn;
-~ Loop which executes until k_ = O.
While(k_)

—- Find counter example for B2 and the current transition.
Le%t counter_example := _trans[k_] & p & !next(p);

~— If the obdd of counter_example is anything but the O obdd leaf
~- then we found a counter example.
If (counter_example)
Print "binv FAILED in premise B2 for tramsitiom ",k_,
"\n'", counter_exampie ;
Return ;
End

Let k_ = k_ - 1;
End

Print "B2 PASSED","\a" ;
End

s _tn — The total number of transitions. @ '

Transition 1 (1 <4 < tn) resides in three arrays:

s _t[i] — The sequential component. Defines the value of the state variables in the next state as
s funetion of the state variable and combinational wariahles of the current state.

o d[ij — The combinational component. Defines the value of the combinaticnal variables as &
sunction of the state variables.

o _pregji] — Preserve all other varisbles which ere not assigned to in this transition.

The actual transition is _t[il & 4[4l & _preslil. They are kept separate for performance
considerations.

s i — The tojal initial condition

o _j[i] — Array of just conditions

s _jn — The number of items in array -]

s _cpli] — Array of compassionate subcondition
e _cqli) — Array of compassionate subeondition

e _cn — The number of items in arrays £D,-Cq

ATl arrays start from index 1.

TJgually there is only one system in a single SMV file. The following variables are relevant when
there is more than one system:

e _sn —— The number of systems in the file

s _tﬁ[i] — Thé number of transitions in system 1.

e ifi] — The initial condition of system 1.

e _infi) — The number of justice conditions in system i.

s _cnli] -—— The number of compassion conditions in system i.

o .id[i] —— All variables in system i are equal to their primed versions.

® ..V&}S[l] — All variables in system i {unprimed).

T T

i PR TR,

"% : 0..3 kind of xx; ST T

Then for all systems, an array item with the set of variables of this kind will be created, even if
-that gystem has no variables of that kind. For example, if the file containing the decaration above

‘has three systems then array items xx[1], xx[2] and xx[3] will be formed, and one of them will contain
the variable k defined above.

In addition, the following ” constants” are also supplied:

s id — All variables are equal to their primed version.

o _vars — All variables (unprimed).

s _def — All variables which are defined variables.

Logical operators

operator | TLV
A &, \
v s\
= !
— ->
<=2

The bdds which are a result of the expressions cannot have leaves with a value which differs fic
0/1.

Numeric operators ‘

Comparitive: = 1= < > <= >=
Compnutational : + - * / med

v a{ue sets

These expressions are used $o specify sets of values which & variable may be equal 0.
The set constant has the following form:
{ vali, val2, ... , valn 1

Set operators
s exprl in expr2
This is the inclusion operator which checks for membership in a set expr.
e exprl notin expr?
The negation of the “in” operator.
e exprl union expra
Returns the union of two value sets. If either argument is a number of a symbolic value instead

of a set it is coerced to a singleton set.

Variable sels

Variable sets are used mainly for quantifitation over sets of variables, by the following functions:

s exprl forsome expr2
exprl forall expr2

Returns forsomé and forall functions where expr2 contains the variables to be quantified. expra
should be a variable set.

The predefined variable ” vars” is a bdd which represents the set of all program variables. The *
following functions manipulate sets of variables. h o

>

A common pitfall arises when one wants to ask whether an expression is a contracdication or
empty set (i.e. it is the OBDD leaf 0). A naive attempt to asl: this can be done as:

Wrong
£ (& =10)

End '

Note that the value of the expression & = 0 will be true if the hdd répresenting k has some path

leading o a zero leaf. But what we want is an expression which will be true if all paths lead to the
zero leal.

This can be done by using the “value” function. “value” always returns some leaf of its bdd
argument. It tries to return a non-zerc leaf, so it will only return O if its parameter is 0. So the right
way to ask whether k is a contradicition Is:

Tf (value(k) = 0)
End

Alternatively you could add an else statement and move the desired code there. For example:

If (k) .
Some code which does absolutely nothing
Let k := k;

Else

The code you want to perform in case k is a contradiction.

End

